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ABSTRACT
The self-attention mechanism, which equips with a strong capabil-
ity of modeling long-range dependencies, is one of the extensively
used techniques in the sequential recommendation field. However,
many recent studies represent that current self-attention basedmod-
els are low-pass filters and are inadequate to capture high-frequency
information. Furthermore, since the items in the user behaviors
are intertwined with each other, these models are incomplete to
distinguish the inherent periodicity obscured in the time domain.
In this work, we shift the perspective to the frequency domain, and
propose a novel Frequency Enhanced Hybrid Attention Network
for Sequential Recommendation, namely FEARec. In this model,
we firstly improve the original time domain self-attention in the fre-
quency domain with a ramp structure to make both low-frequency
and high-frequency information could be explicitly learned in our
approach. Moreover, we additionally design a similar attention
mechanism via auto-correlation in the frequency domain to cap-
ture the periodic characteristics and fuse the time and frequency
level attention in a union model. Finally, both contrastive learning
and frequency regularization are utilized to ensure that multiple
views are aligned in both the time domain and frequency domain.
Extensive experiments conducted on four widely used benchmark
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datasets demonstrate that the proposed model performs signifi-
cantly better than the state-of-the-art approaches1.
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1 INTRODUCTION
In recent years, sequential recommendation [1, 2] has attracted
increasing attention from both industry and academic communities.
Essentially, the key advantage of sequential recommender models
lies in the explicit modeling of item chronological correlations. To
capture users’ dynamic sequential information more accurately,
recent years have witnessed lots of efforts based on either Markov
chains [3] or Recurrent Neural Networks (RNNs) [2]. Meanwhile,
Transformer [4] has emerged as a powerful architecture and a
dominant force in various research fields and outperformed RNN-
based models in the recommendation tasks. Attributed to its strong
capability of modeling long-range dependencies in data, various
sequential recommender models [1, 5–12] adopt Transformers as
the sequence encoder to capture item correlations via assigning
attention weights to items at different positions and obtain high-
quality sequence representations.

1Our code is available at: https://github.com/sudaada/FEARec.
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Figure 1: Illustration of our motivations. (a) By shifting the
sequential behaviors from the time domain to the frequency
domain, the historical item sequence of each user decom-
posed into multiple behavioral patterns with different fre-
quencies and periods along the 𝜔-axis. (b) By constructing
𝑠𝑢 ’s 𝜏 lag sequences Roll(𝑠𝑢 , 𝜏), the periodic pattern can be dis-
tinguished from themost similar sequenceswith the help of
discrete Fourier transform.

Despite their effectiveness, self-attention used in current Trans-
former based models is constantly a low-pass filter, which contin-
uously erases high-frequency information according to the the-
oretical justification in [13, 14]. That means, SASRec [5] and its
variants are highly capable of capturing low-frequencies in the
sequential data [15], which helps capture a global view of user’s
interaction data and the overall evolution of user preference. But
owing to its non-local operation [16], they are incompetent in
learning high-frequencies information, including those items that
interact frequently within a short period.

To alleviate these issues, existing methods import local con-
straints in different ways to complement Transformer-based mod-
els. Such as LSAN [17] adopts a novel twin-attention paradigm to
capture the global and local preference signals via a self-attention
branch and a convolution branch module, respectively. LOCKER [16]
combines five local encoders with existing global attention heads to
enhance short-term user dynamics modeling. However, the above-
mentioned models almost process the historical interactions from
the perspective of the time domain, but seldom consider tackling
this challenge in the frequency domain, where the reduced high-
frequency information can be easily obtained. Take Figure 1(a) for
an example, from the viewpoint of the time domain, all the items
are chronologically ordered and intertwined along the 𝑡-axis. With
a Discrete Fourier Transform (DFT) [18, 19], the historical item
sequence features of each user can be decomposed into multiple
behavioral patterns with different frequencies along the𝜔-axis, and
the input time features are then converted to the frequency domain.
Eventually, improving the self-attention operation’s capability for
capturing high-frequency information in the frequency domain
could become a more direct and effective way.

Moreover, users’ behaviors on the Internet tend to show certain
periodic trends [20–22]. Take Figure 1(b) for an example, there is
a periodic behavior pattern hidden in Bob’s low-frequency inter-
active item, 𝑖 .𝑒 ., a watch and laptop are brought after buying a
mobile phone. When he recently bought a product with similar

characteristics again, a laptop may be a good recommendation to
him. However, it is difficult to find the periodic behavior patterns
hidden in the sequence by directly calculating the overall attention
scores of items in the time domain. But in the frequency domain,
there emerges some methods [23] constructing models to recognize
the periodic characterize with the help of the Fourier transform,
which inspires us to tackle this challenge from a new perspective
for recommendation.

For these reasons, we shift the perspective to the frequency do-
main and propose a novel Frequency Enhanced Hybrid Attention
Network for Sequential Recommendation (FEARec). Firstly, we
improve the time domain self-attention with an adaptive frequency
ramp structure. After DFT, we select a specific frequency compo-
nent as the input feature for each time domain self-attention layer.
That enables each layer to focus on different frequency ranges (in-
cluding not only low-frequency but also high-frequency) to address
the problem that self-attention only concentrates on low-frequency.
Furthermore, to disentangle the temporal sequence and highlight
the inherent periodicity of user behaviors, we design a novel auto-
correlation based frequency attention, which is an efficient method
to discover the period-based dependencies by calculating the auto-
correlation in the frequency domain based on the Wiener-Khinchin
theorem [24]. Autocorrelation is used to compare a sequence with
a time-delayed version of itself. Specifically, given a user’s behav-
ior sequence 𝑠𝑢 and its 𝜏 lag sequences Roll(𝑠𝑢 , 𝜏) in Figure 1, the
sequential-level connection can be constructed by aggregating the
top-𝑘 relative sequences (Roll(𝑠𝑢 , 𝜏1), · · · , Roll(𝑠𝑢 , 𝜏𝑘 )) based on the
auto-correlation. Then, we combine the time domain self-attention
with frequency domain attention in a union hybrid attention frame-
work. With the help of contrastive and frequency domain regularize
loss, a multi-task learning method is applied to increase the super-
vision information and regularize the training process. The main
contributions of this paper can be summarized as follows:

• We shift the perspective to the frequency domain and design
a frequency ramp structure to improve existing time domain
self-attention.

• We propose a novel frequency domain attention based on an auto-
correlation mechanism, which discovers similar period-based
dependencies by aggregating most relative time delay sequences.

• We unify the frequency ramp structure with vanilla self-attention
and frequency domain attention in one framework and design a
frequency domain loss to regularize the model training.

• We conduct extensive experiments on four public datasets, and
the experimental results imply the superiority of the FEARec
compared to state-of-the-art baselines.

2 RELATEDWORK
2.1 Sequential Recommendation
Sequential recommendation forecasts future items throughout the
user sequence by modeling item transition correlations. Early SR
studies are often based on the Markov Chain assumption [3]. Af-
terward, many deep learning-based sequential recommender mod-
els have been developed, e.g., GRU4Rec [2], Caser [25]. Later on,
self-attention networks have shown great potential in modeling
sequence data and a variety of related models are developed, e.g.,
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Figure 2: An overview of FEARec. FEARec generates item embedding with positional embedding through the embedding
layer, then stacks 𝐿 hybrid attention blocks to extract user preference in both the item level and frequency level. Supervised
contrastive learning and frequency domain regularization are also applied as auxiliary tasks to complement the main task.

SASRec [5], BERT4Rec [1] and S3Rec [26]. Recently, many improve-
ments on self-attention based solutions [27–34] are proposed to
learn better representations of user preference. Most of them use
the next-item supervised training style as their training scheme.
The other training scheme usually has extra auxiliary training tasks.
CL4SRec [8] applies a contrastive strategy to multiple views gener-
ated by data augmentation. CoSeRec [6] introduces more augmen-
tation operations to train robust sequence representations. DuoRec
[7] combines recommendation loss with unsupervised learning
and supervised contrastive learning to optimize the SR models. De-
spite the success of these models in SR, they ignored important
information hidden in the frequency domain.

2.2 Frequency Domain Learning
Fourier transform has been an important tool in digital signal pro-
cessing and graph signal processing for decades [35–38]. There are
a variety of works that incorporate Fourier transform in computer
vision [19, 39–42] and natural language processing [43, 44]. Very
recent works try to leverage Fourier transform enhanced model for
long-term series forecasting [23, 45] and partial differential equa-
tions solving [46–48]. However, there are few Fourier-related works
in the sequential recommendation. More recently, FMLP-Rec [18]
first introduce a filter-enhanced MLP for SR, which multiplies a
global filter to remove noise in the frequency domain. However,
the global filter tends to give greater weight to low frequencies and
underrate relatively high frequencies.

3 PROPOSED METHOD
In this section, we present the details of the proposed Frequency
Enhanced HybridAttention Network for SequentialRecommendat-
ion namely (FEARec). As shown in Figure 2, after the embedding
layer we first transform the embeddings of item sequences from the

time domain to the frequency domain by using Fast Fourier Trans-
form (FFT) algorithm mentioned in Appendix A.1.2. Then hybrid at-
tention is conducted on the sampled frequency components, which
captures attention scores and periodic behavior patterns of differ-
ent frequency bands simultaneously. Finally, we apply contrastive
learning and frequency domain loss to improve representations in
both time and frequency domains

3.1 Embedding Layer
Sequential Recommendation focus on modeling the user behavior
sequence of implicit feedback, which is a list of item IDs in SR. In
this paper, the item ID set is denoted by I = {𝑖1, 𝑖2, ..., 𝑖 |I |} and
user ID set is represented as U = {𝑢1, 𝑢2, ..., 𝑢 |U |}, where 𝑖 ∈ I
denotes an item and 𝑢 ∈ U denotes a user. In this way, the set of
user behavior can be represented as 𝑆 = {𝑠1, 𝑠2, ..., 𝑠 |U |}. In SR, the
user’s behavior sequence is usually chronologically ordered, 𝑖 .𝑒 .,
𝑠𝑢 = [𝑖 (𝑢)1 , 𝑖

(𝑢)
2 , ..., 𝑖

(𝑢)
𝑡 , ..., 𝑖

(𝑢)
𝑁

], where 𝑠𝑢 ∈ 𝑆,𝑢 ∈ U, and 𝑖 (𝑢)𝑡 ∈ I
is the item that user 𝑢 interacts at time step 𝑡 and 𝑁 is the sequence
length. For 𝑠𝑢 , it is embedded as:

E𝑢 = [e(𝑢)1 , e(𝑢)2 , ..., e(𝑢)
𝑁

] (1)

where e(𝑢)𝑡 is the embedding of item 𝑖
(𝑢)
𝑡 . To make our model sen-

sitive to the positions of items, we adopt positional embedding to
inject additional positional information while maintaining the same
embedding dimensions of the item embedding. Moreover, dropout
and layer normalization operations are also implemented:

E𝑢 = Dropout(LayerNorm(E𝑢 + P)) (2)

It is worth noting that each item has a unique ID different from
each other, but after the embedding layer, similar items may have
the same feature value.
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3.2 Frequency Enhanced Hybrid Attention
Encoder

Based on the embedding layer, we develop the item encoder by
stacking 𝐿 Frequency Enhanced hybrid Attention (FEA) blocks,
which generally consists of three modules, 𝑖 .𝑒 ., frequency ramp
structure, hybrid attention layer, and the point-wise Feed Forward
Network (FFN). Since FEARec focuses on capturing specific fre-
quency spectrum at different layers, we first introduce the frequency
ramp structure for each layer, and then present other modules for
the sampled frequencies at a certain layer.

3.2.1 Frequency Ramp Structure. In FEARec, instead of preserving
all frequency components, we only extract a subset of frequencies
for each layer to guarantee that different attention blocks focus
on different spectrums. This strategy is used in both time domain
attention and frequency domain attention as shown in Figure 2.

First, given the input item representation matrix H𝑙 ∈ R𝑁×𝐷 of
the 𝑙-th layer and H0 = E𝑢 , we could execute FFT denoted as F (·)
along the item dimension to transform the input item representation
matrix H𝑙 to the frequency domain:

F (H𝑙 ) → X𝑙 ∈ C𝑁×𝐷 (3)

As said in Appendix A.1.1, due to the conjugate symmetric prop-
erty in the frequency domain, only half of the spectrum is used in
FEARec

𝑀 = ⌈𝑁 /2⌉ + 1 (4)
As a result, the sequence length ofX𝑙 almost equals half ofH𝑙 . Note
that X𝑙 is a complex tensor and represents the spectrum of H𝑙 .

Then, as shown in Figure 3(a), we gradually select a specific
frequency range for each layer and formulate this select operator
as

�̃�
𝑙
= Sample𝑙𝛼 (𝑿𝑙 ) = 𝑿𝑙 [𝑝𝑙 : 𝑞𝑙 , :] (5)

where �̃�𝑙 ∈ C𝐹×𝐷 and 𝐹 ∈ N denotes the length of sampled fre-
quency features. We set 𝛼 = 𝐹

𝑀
as the initial sampling ratio and

all frequency components are retained when 𝛼 =1. The indexes
of the sampled frequency components (𝑝𝑙 and 𝑞𝑙 ) are determined
by the position of the current layer in the model. Taking into ac-
count that top layers focus more on modeling low-frequency global
information while bottom layers are more capable of capturing
high-frequency details [15], we choose the direction from high
frequency to low frequency. For example, for 𝑙-th layer:

𝑝𝑙 = 𝑀 (1 − 𝛼) (1 − 𝑙 − 1
𝐿 − 1

) (6)

𝑞𝑙 = 𝑝𝑙 + 𝛼𝑀 (7)
From Figure 3(b), when 𝛼 > 1

𝐿
, the frequencies of different layers

are overlapped. To avoid the problem of missing frequencies when
𝛼 ≤ 1

𝐿
, we adopt average sampling to ensure that all frequencies

are retained:
𝑝𝑙 = 𝑀 (1 − 𝑙

𝐿
) (8)

𝑞𝑙 = 𝑝𝑙 + 𝑀

𝐿
(9)

In this way, the whole spectrum is split into several frequency
components and preprocessed in different layers. That convenient
for us to capture different frequency patterns, and explicitly model

Layer 1
Layer 2

Layer 5

Layer 4

Layer 3

Mode1 Mode2 

High Low High Low
Layer 1
Layer 2

Layer 5

Layer 4

Layer 3

(a) 𝛼 ≤ !
"

(b) 𝛼 > !
"

Figure 3: Frequency ramp sampling. When 𝛼 ≤ 1
𝐿
sampling

mode1 is adopted, and 𝛼 > 1
𝐿
sampling mode2 is adopted.

high-frequency information that is overlooked by classical self-
attention operation.

3.2.2 Time Domain Self-Attention Layer. As shown in Figure 3, we
propose the time domain self-attention to expand the information
utilization. For the embedding H𝑙 , after linear projector, we get
the queries 𝑸𝑙 ∈ R𝑁×𝐷 , keys 𝑲𝑙 ∈ R𝑁×𝐷 , and values 𝑽 𝑙 ∈ R𝑁×𝐷 .
Then we convert 𝑸𝑙 , 𝑲𝑙 , 𝑽 𝑙 to frequency by FFT and sample a
Specific frequency components for each layer. Note that, before
computing the attention weights in the time domain, the sampled
frequencies need to be zero-padded from C𝛼𝑀×𝐷 to C𝑀×𝐷 . The
whole process is represented as:

�̃�
𝑙
𝑡 = F −1 (Padding(Sample𝑙𝛼 (F (𝑸𝑙 ))))

�̃�
𝑙
𝑡 = F −1 (Padding(Sample𝑙𝛼 (F (𝑲𝑙 ))))

�̃�
𝑙
= F −1 (Padding(Sample𝑙𝛼 (F (𝑽 𝑙 ))))

(10)

and

Attention(�̃�𝑙
𝑡 , �̃�

𝑙
𝑡 , �̃�

𝑙 ) = softmax(
�̃�
𝑙
𝑡 (�̃�

𝑙
𝑡 )⊤√
𝐷

)�̃� 𝑙 (11)

In this way, our time domain self-attention can learn not only
the low-frequency information in the top layers but also the high-
frequency in the bottom layers, thus boosting the model’s capability
of capturing local behaviors. For the multi-head version used in
FEARec, given hidden variables of 𝐷 channels, ℎ heads, the query,
key and value for 𝑖-th head Q𝑖 , K𝑖 , V𝑖 ∈ R𝑁×𝐷

ℎ , 𝑖 ∈ {1, ..., ℎ}, we
have:

MultiHead(Q,K,V) = Concat(head1, ..., headℎ)W
where head𝑖 = Attention(Q𝑖 ,K𝑖 ,V𝑖 )

(12)

Where learnable output matrix W ∈ RD×D . Hence, the multi-
head attention operation for �̃�𝑙

𝑡 , �̃�
𝑙
𝑡 , �̃�

𝑙 in time domain equals to
MultiHead𝑡𝑖𝑚𝑒 (�̃�

𝑙
𝑡 , �̃�

𝑙
𝑡 , �̃�

𝑙 ).

3.2.3 Frequency Domain Attention Layer. Existing self-attentive se-
quential recommenders tend to capture a global view of user interac-
tions at the item level, missing the periodic similar behavior patterns
captured at the sequence level. As discussed in Section 1, by calcu-
lating the auto-correlation, we can find the most related time-delay
sequences in the frequency domain and thus discover the periodic-
ity hidden in the behaviors. Specifically, as shown as Figure 1, given
a finite sequence of user 𝑠𝑢 = [𝑖 (𝑢)1 , 𝑖

(𝑢)
2 , 𝑖

(𝑢)
3 , · · · , 𝑖 (𝑢)

𝑁−1, 𝑖
(𝑢)
𝑁

], the
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Figure 4: The architecture of hybrid attention layer.

time delay operation is defined as Roll(𝑠𝑢 , 𝜏), where 𝜏 ∈ {1, · · · , 𝑁 }
indicates the time lag and Roll(𝑠𝑢 , 𝜏) can be formulated as:

Roll(𝑠𝑢 , 𝜏) = [𝑖 (𝑢)
𝜏+1, · · · , 𝑖

(𝑢)
𝑁

, 𝑖
(𝑢)
1 , · · · , 𝑖 (𝑢)𝜏 ] (13)

where Roll(𝑠𝑢 , 𝑁 ) = 𝑠𝑢 . Its corresponding embedding matrix is
denoted as �̃� 𝑙𝜏 . We perform a similar attention mechanism via auto-
correlation in the frequency domain. For the queries 𝑸𝑙 ∈ R𝑁×𝐷 ,
keys 𝑲𝑙 ∈ R𝑁×𝐷 , and values 𝑽 𝑙 ∈ R𝑁×𝐷 , the auto-correlation is
defined as

�̃�
𝑙
𝑓 = Sample𝑙𝛼 (F (𝑸𝑙 ))

�̃�
𝑙
𝑓 = Sample𝑙𝛼 (F (𝑲𝑙 ))

R
�̃�

𝑙

𝑓 ,�̃�
𝑙

𝑓

(𝜏) = F −1 (Padding(�̃�𝑙
𝑓 ⊙ (�̃�𝑙

𝑓 )∗))

(14)

where ⊙ represents the element-wise product and * means the
conjugate operation. We denote the sampled feature as �̃�𝑙

𝑓 , �̃�
𝑙
𝑓 ∈

C𝛼𝑀×𝐷 . �̃�𝑙
𝑓 ⊙ (�̃�𝑙

𝑓 )∗ ∈ C𝛼𝑀×𝐷 needs to be zero-padded to C𝑀×𝐷

before performing inverse Fourier transform. Since the information
used to compute the attention scores is coming from within the
same sequence, here we consider it to be auto-correlation rather
than cross-correlation. The auto-correlation R

�̃�
𝑙

𝑓 ,�̃�
𝑙

𝑓

(𝜏) ∈ R𝑁×𝐷

is based on the Wiener-Khinchin theorem (more details in the
Appendix A.2). We further conductMEAN operation onR

�̃�
𝑙

𝑓 ,�̃�
𝑙

𝑓

(𝜏)

to transfer its dimension R𝑁×𝐷 into R𝑁 .
The auto-correlation refers to the correlation of a time sequence

with its own past and future, we choose the most related 𝜏𝑖 , ..., 𝜏𝑘
from R

�̃�
𝑙

𝑓 ,�̃�
𝑙

𝑓

(𝜏):

𝜏1, · · · , 𝜏𝑘 = arg Topk
𝜏 ∈{1, · · · ,𝑁 }

(R
�̃�

𝑙

𝑓 ,�̃�
𝑙

𝑓

(𝜏)) (15)

where arg Topk(·) is to get the arguments of the Top𝑘 auto-correlation
and 𝑘 = ⌊𝑚 × 𝑙𝑜𝑔𝑁 ⌋. In this way, we get the most relevant time
delay sequences Roll(𝑠𝑢 , 𝜏𝑖 ), 𝜏𝑖 ∈ {𝜏1, · · · , 𝜏𝑘 }. Then, the attention
weights of different sequences are calculated as:

R̂
�̃�

𝑙

𝑓 ,�̃�
𝑙

𝑓

(𝜏1) , · · · , R̂�̃�
𝑙

𝑓 ,�̃�
𝑙

𝑓

(𝜏𝑘 ) =

SoftMax(R
�̃�

𝑙

𝑓 ,�̃�
𝑙

𝑓

(𝜏1) , · · · ,R�̃�
𝑙

𝑓 ,�̃�
𝑙

𝑓

(𝜏𝑘 ))
(16)

Hence, the 𝑘 most similar sequences can be aggregated by multi-
plying with their corresponding auto-correlations, which is called
time delay aggregation in Figure 4:

Auto-Correlation (�̃�𝑙
𝑓 , �̃�

𝑙
𝑓 , �̃�

𝑙 ) =
𝑘∑︁
𝑖=1

�̃�
𝑙
𝜏𝑖
R̂
�̃�

𝑙

𝑓 ,�̃�
𝑙

𝑓

(𝜏𝑖 ) (17)

where Auto-Correlation (�̃�𝑙
𝑓 , �̃�

𝑙
𝑓 , �̃�

𝑙 ) ∈ R𝑁×𝐷 . The multi-head at-

tention operation is also conducted for �̃�𝑙
𝑓 , �̃�

𝑙
𝑓 , �̃�

𝑙 in frequency

domain, which equals to MultiHead𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (�̃�
𝑙
𝑓 , �̃�

𝑙
𝑓 , �̃�

𝑙 ). Finally,
we sum the output of the frequency domain attention module and
the output of the time domain attention module with the hyperpa-
rameter 𝛾 .

Ĥ𝑙 =𝛾 MultiHead𝑇𝑖𝑚𝑒 (�̃�
𝑙
𝑡 , �̃�

𝑙
𝑡 , �̃�

𝑙 )+

(1 − 𝛾)MultiHead𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (�̃�
𝑙
𝑓 , �̃�

𝑙
𝑓 , �̃�

𝑙 )
(18)

3.2.4 Point-wise Feed Forward Network. The frequency domain
attention and time domain self-attention are still linear operations,
which fail to model complex non-linear relations. To make the
network non-linear, we use a two-layerMLPwith a GELU activation
function. The process is defined as follows:

H̃𝑙 = FFN(Ĥ𝑙 ) = (GELU(Ĥ𝑙W𝑙
1 + b𝑙1))W

𝑙
2 + b𝑙2 (19)

whereW𝑙
1,W

𝑙
2 ∈ R𝑑×𝑑 and b𝑙1, b

𝑙
2 ∈ R1×𝑑 are learnable parameters.

To avoid overfitting, 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 layer, residual connection structure,
and layer normalization operations are applied on the obtained
output H𝑙+1, as shown below:

H𝑙+1 = LayerNorm(H𝑙 + Ĥ𝑙 + Dropout(H̃𝑙 )) (20)

3.3 Prediction Layer
After 𝐿 FEA blocks that hierarchically extract behavior pattern in-
formation of previously interacted items, we get the final combined
representation of behavior sequences. Based on the preference
representation H𝐿 , we multiply it by the item embedding matrix
E ∈ R |I |×𝐷 to predict the relevance of the candidate item and use
softmax to convert it into recommendation probability:

ŷ = softmax(E⊤H𝐿) (21)

Hence, we expect that the true item 𝑖 adopted by user 𝑢 can lead
to a higher score 𝑦𝑖 . Therefore, we adopt the cross-entropy loss to
optimize the model parameter. The objective function of SR can be
formulated as:

L𝑅𝑒𝑐 = −
|𝐼 |∑︁
𝑖=1

𝑦𝑖 log (𝑦𝑖 ) + (1 − 𝑦𝑖 ) log (1 − 𝑦𝑖 ) (22)

3.4 Multi-Task Learning
To enhance the training of hybrid attention to capture attention
scores and periodic behavior patterns of different frequency bands
of user sequence, we leverage a multi-task training strategy to
jointly optimize the main recommendation loss with auxiliary dual
domain regularization.
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3.4.1 Contrastive Learning. Contrastive learning aims to minimize
the difference between differently augmented views of the same
user andmaximize the difference between the augmented sequences
derived from different users.

Although previous augmentations methods [8] including item
cropping, masking, and reordering help to enhance the performance
of SR models, the data-level augmentations cannot guarantee a high
level of semantic similarity [7]. Instead of using typical data aug-
mentations, we use a dropout-based augmentations methods as
shown in the right part of Figure 2, which is proposed in [7, 49]. We
let E𝑢 and E′𝑢 pass through the FEA encoder twice for two output
views H𝐿

𝑢 and (H𝐿
𝑢 )′ respectively and model the frequency compo-

nents to construct harder positive samples by mixing the frequency
feature extract from time domain self-attention and frequency au-
tocorrelation attention. Since there are different dropout layers in
the embedding layer and hybrid attention module, we will get two
different numerical features but similar semantics. Besides, in order
to increase the supervision signal of contrast learning, we follow
DuoRec [7] and use a sequence 𝑠𝑢,𝑠 with the same target as 𝑠𝑢 as
the positive sample of supervised contrast learning. All the other
augmented samples in the training batch are treated as negative
samples in order to efficiently create the negative samples for an
augmented pair of samples (represented as 𝑛𝑒𝑔).

For the batch B, the contrastive regularization is defined as:

LCLReg = LCLReg (h′𝑢 , h′𝑢,𝑠 ) + LCLReg (h′𝑢,𝑠 , h′𝑢 ) (23)

LCLReg(h′𝑢 ,h′𝑢,𝑠 ) = − log
exp(sim(h′𝑢 , h′𝑢,𝑠 ))∑

𝑛𝑒𝑔 exp(sim(h′𝑢 , h𝑛𝑒𝑔))
(24)

where 𝑠𝑖𝑚(·) is dot product and h′𝑢 and h′𝑢,𝑠 represent unsupervised
and supervised augmented views, respectively, defined as follows:

h′𝑢 = (H𝐿
𝑢 )′[−1], h′𝑢,𝑠 = (H𝐿

𝑢,𝑠 )′[−1] (25)

3.4.2 Frequency Domain Regularization. The contrastive loss is in-
tuitively performing the push and pull game according to Equation
24 in the time domain. Since time-domain and frequency-domain
features represent the same semantics, but only in different domains,
we assume that the frequency spectrum of similar time-domain
features should also be similar. To ensure the alignment of the
representation of different augmented views in the frequency do-
main, we suggest an L1 regularization in the frequency domain
as a complement to FEARec, which contributes to enriching the
regularization of the spectrum of the augmented views.

L𝐹𝑅𝑒𝑔 = ∥F (h′𝑢 ) − F (h′𝑢,𝑠 )∥1 (26)

3.4.3 Train and Inference. Thus, the overall objective of FEARec
with 𝜆 scale weight is:

ℓ = ℓRec + 𝜆1ℓCReg + 𝜆2ℓFReg (27)

where 𝜆 is the hyperparameter to control the strengths of con-
trastive regularization.

4 EXPERIMENT
In this section, we first briefly describe the settings in our exper-
iments and then conduct extensive experiments to evaluate our
proposed model by answering the following research questions:

Table 1: Statistics of the datasets after preprocessing.

Specs. Beauty Clothing Sports ML-1M

# Users 22,363 39,387 35,598 6,041
# Items 12,101 23,033 18,357 3,417
# Avg.Length 8.9 7.1 8.3 165.5
# Actions 198,502 278,677 296,337 999,611
Sparsity 99.93% 99.97% 99.95% 95.16%

• RQ1: How does FEARec perform compared with state-of-the-art
SR models?

• RQ2:How do key components, such as frequency sampling, time
domain self-attention and frequency domain attention affect the
performance of FEARec respectively?

• RQ3: What is the influence of different hyper-parameters in
FEARec?

• RQ4: Do frequency domain attention and time domain attention
focus on the same features?

4.1 Experimental Setup
4.1.1 Dataset. We conduct experiments on four publicly available
benchmark datasets. Beauty, Clothing, and Sports2 are three
subsets of Amazon Product dataset, which is known for high spar-
sity and short sequence lengths. MovieLens-1M3 is a large and
dense dataset consisting of long item sequences collected from
the movie recommendation site MovieLens. While ML-1M only
contains about 1 million interactions. For all datasets, users/items
interacted with less than 5 items/users were removed[1, 50]. The
statistics of the four datasets after preprocessing are summarized
in Table 1.

4.1.2 Evaluation Metrics. In evaluation, we adopt the leave-one-
out strategy for each user’s item sequence. As suggested by [51],
we rank the predictions over the whole item set without negative
sampling. We report the widely used Top-𝑛 metrics HR@𝑛 (Hit
Rate) and NDCG@𝑛 (Normalized Discounted Cumulative Gain) to
evaluate the recommended lists, where 𝑛 is set to 5, 10.

4.1.3 Baselines. We compare our methods with three types of rep-
resentative SR models: Non-sequential models: BPR-MF [52] is
a classic non-sequential method for learning personalized rank-
ing from implicit feedback and optimizing the matrix factorization
through a pair-wise Bayesian Personalized Ranking (BPR) loss.
Standard sequential models: GRU4Rec [2] is the first recurrent
model to apply Gated Recurrent Unit (GRU) to model sequences
of user behavior for sequential recommendation. Caser [25] is a
CNN-based method capturing user dynamic patterns by using con-
volutional filters. SASRec [5] is a strong Transformer-based model
with amulti-head self-attentionmechanism. FMLP-Rec [18] is an all-
MLP model using a learnable filter-enhanced block to remove noise
in the embedding matrix. Sequential models with contrastive
learning: CL4SRec [8] generates different contrastive views of the
same user interaction sequence for the auxiliary contrastive learn-
ing task. CoSeRec [6] improves the robustness of data augmentation
under the contrastive framework by leveraging item-correlations.
2http://jmcauley.ucsd.edu/data/amazon/links.html
3https://grouplens.org/datasets/movielens/1m/
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Table 2: Overall performance over four datasets. Bold scores represent the highest results of all methods. Underlined scores
stand for the highest results from previous methods. The FEARec achieves the state-of-the-art result among all baseline mod-
els.

Datasets Metric BPR-MF GRU4Rec Caser SASRec BERT4Rec FMLP-Rec CL4SRec CoSeRec DuoRec FEARec Improv.

Beauty

HR@5 0.0120 0.0164 0.0259 0.0365 0.0193 0.0398 0.0401 0.0537 0.0546 0.0597 9.34%
HR@10 0.0299 0.0365 0.0418 0.0627 0.0401 0.0632 0.0683 0.0752 0.0845 0.0884 4.61%
NDCG@5 0.0040 0.0086 0.0127 0.0236 0.0187 0.0258 0.0223 0.0361 0.0352 0.0366 3.97%
NDCG@10 0.0053 0.0142 0.0253 0.0281 0.0254 0.0333 0.0317 0.0430 0.0443 0.0459 3.61%

Clothing

HR@5 0.0067 0.0095 0.0108 0.0168 0.0125 0.0173 0.0168 0.0175 0.0193 0.0214 10.88%
HR@10 0.0094 0.0165 0.0174 0.0272 0.0208 0.0277 0.0266 0.279 0.0302 0.0323 6.95%
NDCG@5 0.0052 0.0061 0.0067 0.0091 0.0075 0.0098 0.0090 0.0095 0.0113 0.0121 7.08%
NDCG@10 0.0069 0.0083 0.0098 0.0124 0.0102 0.0127 0.0121 0.0131 0.0148 0.0156 5.41%

Sports

HR@5 0.0092 0.0137 0.0139 0.0218 0.0176 0.0218 0.0227 0.0287 0.0326 0.0353 8.28%
HR@10 0.0188 0.0274 0.0231 0.0336 0.0326 0.0344 0.0374 0.0437 0.0498 0.0547 9.84%
NDCG@5 0.0040 0.0096 0.0085 0.0127 0.0105 0.0144 0.0129 0.0196 0.0208 0.0216 3.85%
NDCG@10 0.0051 0.0137 0.0126 0.0169 0.0153 0.0185 0.0184 0.0242 0.0262 0.0272 3.82%

ML-1M

HR@5 0.0078 0.0763 0.0816 0.1087 0.0733 0.1109 0.1147 0.1262 0.2038 0.2212 8.54%
HR@10 0.0162 0.1658 0.1593 0.1904 0.1323 0.1932 0.1975 0.2212 0.2946 0.3123 6.01%
NDCG@5 0.0052 0.0385 0.0372 0.0638 0.0432 0.0657 0.0662 0.0761 0.1390 0.1523 9.57%
NDCG@10 0.0079 0.0671 0.0624 0.0910 0.0619 0.0918 0.0928 0.1021 0.1680 0.1861 10.77%

DuoRec [7] uses unsupervised model-level augmentation and su-
pervised semantic positive samples for contrastive learning. It is
the most recent and strongest baseline for the sequential recom-
mendation.

4.1.4 Implementation Details. For all baseline models, we reim-
plement its model and report the result of each model with its
optimal hyperparameter settings reported in the original paper. We
implement our FEARec model in PyTorch. All the experiments are
conducted on an NVIDIA V100 GPU with 32GB memory. For all
datasets, the maximum sequence length 𝑁 is set to 50. The dimen-
sion of the feed-forward network used in the filer mixer blocks and
item embedding size 𝑑 are both set to 64. The number of hybrid
attention blocks 𝐿 = 2. The model is optimized by Adam optimizer
with a learning rate of 0.001.

4.2 Overall Performance Comparison (Q1)
To prove the sequential recommendation performance of our model
FEARec, we compare it with other state-of-the-art methods (RQ1).
Table 2 presents the detailed evaluation results of each model.

First, it is no doubt that the non-sequential recommendation
method BPR-MF displays the lowest results across all datasets
since it ignores the sequential information. Second, compared with
the previous RNN-based and CNN-based methods, the advanced
Transformer-based method (e.g., SASRec) shows a stronger capa-
bility of modeling interaction sequences in SR. More recently, a
filter-enhanced MLP structure achieved better performance than
SASRec by denoising with a learnable filter. Third, compared with
the vanilla method, the model with auxiliary self-supervised learn-
ing tasks gains decent improvement. The strongest baseline DuoRec
outperforms all the previous methods by a large margin by model

Table 3: Ablation study of FEARec in terms of HR@5 and
NDCG@5 on Beauty, Clothing and ML-1M datasets.

Methods Beauty Clothing ML-1M

HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5
FEARec 0.0597 0.0366 0.0208 0.0119 0.2212 0.1523
(a) w/o STD 0.0578 0.0356 0.0214 0.0117 0.2141 0.1482
(b) w/o SFD 0.0566 0.0348 0.0204 0.0115 0.2134 0.1457
(c) w/o TDA 0.0589 0.0358 0.0203 0.0113 0.2123 0.1441
(d) w/o FDA 0.0590 0.0361 0.0202 0.0116 0.2116 0.1470
(e) w/o FReg 0.0582 0.0360 0.0208 0.0119 0.2114 0.1433
(f) w/o CReg 0.0567 0.0342 0.0191 0.0106 0.2028 0.1408

augmentation and semantic augmentation, which verify the ef-
fectiveness of the combination of supervised contrastive learning.
Finally, our model outperforms other competing methods on both
sparse and dense datasets with a significant margin across all the
metrics, demonstrating the superiority of our model. In addition,
the average improvement on ML-1M is actually larger than that on
the Amazon dataset, probably because the average length of users’
interaction is extremely short in Amazon. This observation demon-
strates the effectiveness of FEARec in both sparse and dense dataset
and shows that transforming user sequence from the time domain
to the frequency domain and improving the original attention mech-
anism with frequency ramp structure and extra frequency domain
attention is promising to extract useful information for accurate
recommendation.

4.3 Ablation Study (Q2)
In this section, we conduct ablation studies to evaluate the effec-
tiveness of each key component. Table 3 shows the performance of
our default method and its 6 variants on three datasets.
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Table 4: Performance (HR@5) of time-domain self-attention
(TDA) and frequency-domain attention (FDA) module
mixed in different proportions on four datasets.

Hybrid TDA FDA Beauty Clothing Sports ML-1M

(1) 0.1 0.9 0.0596 0.0214 0.0349 0.1863
(2) 0.3 0.7 0.0584 0.0204 0.0335 0.2113
(3) 0.5 0.5 0.0557 0.0207 0.0346 0.2154
(4) 0.7 0.3 0.0591 0.0203 0.0342 0.2169
(5) 0.9 0.1 0.0592 0.0211 0.0339 0.2212

Frequency Ramp Structure. In order to verify the effective-
ness of the frequency ramp structure sampling in FEARec, we
remove the sampling structure from the time-domain attention
module (w/o STD) and frequency-domain (w/o SFD), which means
that sets the sampling ratio 𝛼 equals 1, that is, all frequency com-
ponents are retained. Compared with (a)-(b), we find that without
frequency ramp sampling in time domain or frequency domain, the
performance drops significantly, which verifies the structure can
trade-off high-frequency and low-frequency components across all
layers. In summary, high-frequency information is captured at the
bottom layer, then low-frequency information is gradually captured,
and finally, the overall evolution of user preferences is obtained.

Hybrid Attention Module. From (c)-(d) we can see that each
attention module plays a crucial role in modeling user preference,
and removing time domain attention (w/o TDA) or frequency do-
main attention (w/o FDA) leads to a performance decrease. The
time-domain self-attention layer captures the attention score in the
item level. However, the frequency domain attention layer com-
putes the auto-correlation to recognize the periodic characterize in
the sub-sequence level. The hybrid attention module combines two
attention modules into a unified structure as illustrated in Figure 4,
which is promising to better capture user preference.

Contrastive Learning and regularization. From (e)-(f) we
can see that combining contrastive learning regularization and a
simple frequency domain regularization will improve the perfor-
mance. When removing the contrastive auxiliary task of contrastive
learning will hurt performance, which is consistent with the pre-
vious observation that sequential recommendation benefits from
contrastive learning [6–8]. As a complement to contrastive learning,
frequency domain regularization can implicitly reduce the distance
between the spectrum of two augmented perspectives, but adopting
it alone will yield poor results.

4.4 Hyper-parameter Sensitivity (Q3)
In this section, we study the influence of three important hyper-
parameters in FEARec, including sampling ratio 𝛼 , hybrid ratio
𝛾 and autocorrelation top 𝑘 . We keep all other hyperparameters
optimal when investigating the current hyperparameter.

Module Hybrid Ratio 𝛾 . In order to simultaneously model
user preferences at the item level and sub-sequence level, we mix
the original TDA and FDA through Figure 4, and the weight of
the frequency domain and time domain is controlled by Eq. (18).
From the table 4, we can see that on the Beauty, Clothing and
Sports dataset, the best effect is achieved when the FDA module is
assigned greater weight than the TDA module, which verifies the

effectiveness of frequency domain attention. While on the dense
ML-1M dataset, the TDA module plays a more important role.

Sampling Ratio 𝛼 . The ratio of frequency components is con-
trolled by 𝛼 , which significantly affects how much of the frequency
component is retained. Although the average length of user inter-
actions varies across data sets, the number of all frequency com-
ponents in the frequency domain is 𝑀 . We conduct experiments
under different 𝛼 on four datasets. As shown in Figure 5, we observe
that with the increase of 𝛼 the performance of FEARec starts to
increase at the beginning, and it gradually reaches its peak when
𝛼 equals 0.8 on Amazon-Beauty and Amazon-Clothing, and 0.6
on Amazon-Sports. Afterward, it starts to decline. While on dense
datasets like ML-1M, to capture more complex sequential patterns
of users, the hybrid attention structure requires more frequency
components. Our method FEARec always performs better than
DuoRec, regardless of the value of 𝛼 .

Auto-correlation Top-𝑘 . In frequency domain attention, we
need to aggregate the Top-𝑘 most relevant time delay sequence,
where 𝑘 is determined by the parameter 𝑚 in section 3.2.3. We
gradually increase the parameter𝑚 to aggregate more time delayed
sequences with high autocorrelation. As shown in Figure 6, we can
observe that the performance of FEARec consistently improves as
we increase𝑚 up to a certain point. However, it is worth noting
that further increasing 𝑚 beyond a certain value will result in
performance degradation, which is not shown in the figure. This
is because when 𝑚 is too large, the frequency domain attention
module may start to include irrelevant time delayed sequences,
which can negatively impact the model’s performance.

4.5 Attention Visualization (Q4)
To evaluate how the hybrid attention capture sequential behavior
in both item-level and sub-sequence level, the attention score and
autocorrelation score learned in TDA and FAD in each layer are
visualized on the ML-1M dataset. The results are displayed in Figure
7. Based on our observation, we can derive the following results:
the time-domain attention in the hybrid attention module tends to
assignmore weight to the items initially interacted with because the
users established their basic preference among these items, which
constitute a critical sequential pattern of the user. Different from
the time-domain attention of item level, the visualization results of
frequency-domain attention represent the autocorrelation weights
of different time delay sequences. It can be seen from Figure 6(b) and
(d) that if the time delay is small or large for the original sequence,
a higher autocorrelation score will be obtained, which effectively
show periodic characteristics on ML-1M datasets.

5 CONCLUSION
In this paper, we design a new frequency-based model, FEARec, to
build a hybrid attention manner in both the time and frequency
domains. By working upon our defined frequency ramp structure,
FEARec employs improved time domain attention to learn both
low-high frequency information. We also propose a frequency do-
main attention to exploring inherent dependencies existing in the
sequential behaviors by calculating the autocorrelation of differ-
ent time delay sequences. We further adapt contrastive learning
and frequency domain regularization to ensure that multiple views
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Figure 5: Performance (HR@5) comparison w.r.t different sampling ratio on four datasets.

(a) Sports (b) ML-1M

Figure 6: Performance comparison w.r.t different top 𝑘 time
delay aggregation on Sports and ML-1M datasets.

(a) FEARec, TDA, layer1

(c) FEARec, TDA, layer2

(b) FEARec, FDA, layer1

(d) FEARec, FDA, layer2

Figure 7: Average attention weights and autocorrelation
scores of FEARec at different layers on the ML-1M dataset.

are aligned. Lastly, due to the capability of modeling different fre-
quency information and periodic characteristics, FEARec show the
superiority over all state-of-the-art models.
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A APPENDIX
A.1 Fourier Transform
A.1.1 Discrete Fourier Transform. Discrete Fourier Transform (DFT)
is one of the most widely used computing methods, with numerous
applications in data analysis, signal processing, and machine learn-
ing [53, 54]. As the input data of SR is one-dimensional sequences,
only the 1D DFT is considered in our FEARec. Given a finite se-
quence {𝑥𝑛}𝑁𝑛=1, the 1D DFT could convert the original sequence
into the sequence of complex numbers in the frequency domain by:

𝑋𝑘 =

𝑁∑︁
𝑛=1

𝑥𝑛𝑊
𝑛𝑘
𝑁 , 1 ≤ 𝑘 ≤ 𝑁 (28)

where 𝑁 is the length of the sequence,𝑊 𝑛𝑘
𝑁

is the twiddle factor,
and 𝑋𝑘 is a complex number that represents the signal with fre-
quency 𝜔𝑘 = 2𝜋𝑘/𝑁 . Through Eq. (28), the DFT is completed by
decomposing a sequence of values into components of different fre-
quencies. Note that DFT is a one-to-one unique mapping operation
in the time and frequency domains. And the sequence of frequency
representation {𝑋𝑘 }𝑁𝑘=1 can be transferred to the original feature
domain via an inverse DFT (IDFT), which is formulated as:

𝑥𝑛 =
1
𝑁

𝑁∑︁
𝑘=1

𝑋𝑘𝑊
−𝑛𝑘
𝑁 (29)

For real input 𝑥𝑛 , it has been proven that its DFT is conjugate sym-
metric, i.e., 𝑋𝑘 = 𝑋 ∗

𝑁−𝑘 , where ∗ denotes the conjugate operation.
It indicates that the half of the DFT {𝑋𝑘 }

⌈𝑁 /2⌉
𝑘=0 contains the full in-

formation about the frequency characteristics of 𝑥𝑛 . If we perform
IDFT to {𝑋𝑘 }

⌈𝑁 /2⌉
𝑘=0 , a real discrete signal can be recovered.

A.1.2 Fast Fourier Transform. The Fast Fourier Transform (FFT)
algorithm [55, 56] is a fast algorithm for computing the DFT of a
sequence, which takes advantage of the symmetry and periodicity
properties of𝑊 𝑘𝑛

𝑁
and reduces the complexity to compute DFT
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from O(𝑁 2) to O(𝑁 log𝑁 ). The Inverse FFT (IFFT), which has a
similar form to the DFT, can also be used to efficiently compute
the time features corresponding to 𝑥𝑛 . In this paper, we denote FFT
and IFFT by F and F −1, respectively.

A.2 Wiener-Khinchin Theorem
Given a discrete-time sequence X𝑛 = {𝑥𝑛}𝑁𝑛=1, we can obtain the
auto-correlation RXX (𝜏) in the time domain by the following equa-
tions:

RXX (𝜏) = lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑛=1

X𝑛X𝑛−𝜏 (30)

RXX (𝜏) reflects the time-delay similarity between {X𝑛} and its 𝜏
lag series {X𝑛−𝜏 }. Auto-correlation is an ideal method for uncover-
ing trends and patterns in time series data. Suchmerit is particularly
appealing for the recommendation task, where users’ behaviors
tend to show certain periodic trends [20–22].

To reduce the complexity of auto-correlation computation, the
RXX (𝜏) is calculated in the frequency domain by FFT based on the
Wiener-Khinchin theorem [24].

SXX (𝑓 ) = F (X𝑛) F ∗ (X𝑛)
RXX (𝜏) = F −1 (SXX (𝑓 ))

(31)

where 𝜏 ∈ {1, ..., 𝑁 }, F denotes the FFT and F −1 is its inverse.
And SXX (𝑓 ) is in the frequency domain. Note that the series auto-
correlation of all lags in {1, ..., 𝑁 } can be calculated at once by FFT.
Thus, auto-Correlation achieves the O(𝑁 log𝑁 ) complexity.
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